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a b s t r a c t

A technique is developed for calculating the oscillations of balanced spheres at neutral buoyancy levels
based on the linearization of the equations of the mechanics of a viscous, continuously stratified fluid.
A self-consistent system of integro-differential equations is obtained and analysed using perturbation
theory methods. The results of calculations of the displacements of the centres of the spheres are reduced
to a form which a permits direct comparison with a laboratory experiment and they agree with the data
of measurements. A comparison is made with calculations of the free oscillations of a sphere in an ideal
fluid.

© 2009 Elsevier Ltd. All rights reserved.

When analysing the results of measurements obtained using profiling and freely drifting neutral buoyancy buoys, it is assumed that
they do not disturb the structure of the stratified medium. The amplitude-frequency characteristics when installing a buoy at neutral
buoyancy levels is determined in the approximation of an ideal, continuously stratified1,2 fluid and a two-layer3 fluid. However, the results
of calculations of the oscillations of probes about the neutral buoyancy level are noticeably different from the data from laboratory4 and
semi-natural measurements.5 Schlieren shadow flow visualization patterns and detailed trajectory measurements of the oscillations of
bodies which are freely sinking to the neutral buoyancy level in a continuously stratified medium shows that both internal waves as well
as the non-wave components of flows, including boundary layers and short-lived extended vortices, have an effect on their motion.6,7 In
this connection, a detailed analysis of the processes by which a sphere becomes established at a neutral buoyancy level taking into account
the radiation of internal waves and the dissipation effect is of interest.

1. The system of governing equations

A stable, exponentially stratified fluid is considered, the density of which �0(z) = �0exp(−z′/�), in the system of coordinates (z′, y′,
z′) associated with the fluid, is characterized by a scale �, frequency n and a buoyancy period Tb (the z′ axis is directed opposite to the
acceleration of the force of gravity g, �00 is the density at the neutral buoyancy level and z′ = 0, N =

√
g/� = 2�/Tb.

The equation of motion of a sphere of mass m, on which a buoyancy force FA and a wave force Fz act, has the form3,8

(1.1)

In the case of small displacements � (with respect to the sphere radius R, the initial displacement �0 and the buoyancy scale �), the
buoyancy force is equal to

where � is the polar angle in a spherical system of coordinates associated with the centre of the sphere.

� Prikl. Mat. Mekh. Vol. 73, No. 5, pp. 776–786, 2009.
∗ Corresponding author.

0021-8928/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2009.11.008

http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
dx.doi.org/10.1016/j.jappmathmech.2009.11.008


A.Yu. Vasil’ev, Yu.D. Chashechkin / Journal of Applied Mathematics and Mechanics 73 (2009) 558–565 559

In a Cartesian system of coordinates (x, y, z) associated with the centre of the sphere, the dynamic component of the force, which is
determined by the distribution of the pressure P and the viscous stress tensor, has the form9

where �r, �� and �z are the radial, azimuthal and vertical components of the fluid velocity in a cylindrical system of coordinates and v is
the coefficient of kinematic viscosity. By virtue of the symmetry of the problem, the radial component of the force is equal to zero.

At the initial instant t = 0, both the fluid and the sphere, which is separated by a distance �0 from the neutral buoyancy level z = 0, are
assumed to be motionless:

(1.2)

Equation (1.1) with boundary conditions (1.2) is solved simultaneously with the equations of motion of a viscous incompressible
stratified fluid written in the laboratory system of coordinates9 a (x′, y′, z′)

(1.3)

Here, v = (�x, �y, �z) is the fluid velocity, ez is the unit vector, the effects of diffusion are neglected, P̃ is the pressure after subtracting the
hydrostatic pressure, and �̃ is the density perturabation caused by the oscillations of the sphere.

The boundary conditions for system (1.3) include the condition for the decay of the perturbations at infinity and no-slip condition at
the surface �s = x′2 + y′2 + (z′ − �)2 − R2 = 0 of a sphere of radius R, moving according to the law z′

s(t) = �(t):

(1.4)

At long times, when the sphere stops at the neutral buoyancy level, the fluid motions also attenuate in the whole space:

(1.5)

In the system of coordinates with its origin at the centre of mass of the sphere (x, y, z), which is related to the laboratory system by the
relations

system of equations (1.3) and boundary conditions (1.4) and (1.5) take the form

(1.6)

In deriving Eqs (1.6), unlike the well-known approach,1 account has been taken of the fact that, in the system of coordinates (x, y, z)
associated with the sphere, the distribution of the density �0 of the stratified fluid is a function of time. System (1.6) belongs to the class of
singularly perturbed systems (small coefficients for the leading derivatives), and the solution of such systems is found using a well-known
technique.10

2. Construction of the solution of the governing system

In the linear approximation, the system of equations (1.6) becomes the well known internal wave equation11

(2.1)

In the Boussinesq approximation, neglecting the viscosity effects and terms of the order of d�/dt, Eq. (2.1) becomes a well-known
reduced equation.1

By taking account of the symmetry of the sphere and the internal wave field we can simplify Eq. (2.1) by introducing a stream function
�, which defines the radial �r = r−1∂�/∂z and vertical �z = r−1∂�/∂r components of the velocity9 in the cylindrical system of coordinates
(r, �, z). By virtue of the symmetry of the problem, the azimuthal component of the fluid velocity is identically equal to zero.
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Axi, symmetric solutions of Eq. (2.1), containing the time-dependent factor d�/dt, are found by expansion in Fourier - Bessel integrals
with respect to the variables k and �, that is, with respect to the vertical and radial components of the wave number (everywhere below,
unless otherwise stated, integration with respect to k is carried out from −∞ to ∞ and, with respect to �, from 0 to ∞)

(2.2)

where Jn(�r) is a Bessel function of the first kind of order n.
Substituting of the expansion (2.2) into Eq. (2.1) we obtain the equation for the spectral velocity function f = f (k, �, t)

(2.3)

which determines the radial component of the velocity and the stream function �.
Taking account of the incompressibility condition and the rules for the differentiation and integration of Bessel functions12 we can

obtain expressions for the radial component of the velocity and the stream function

The value of the pressure is found by integrating Eq. (1.3) using representation (2.2):

For brevity, the calculated vertical component of the total force acting on the sphere is not presented here.
In the dimensionless variables � = kR and 	 = �R, when account is taken of the calculated values of the forces, the expansions of the

trigonometric functions occurring in them and the integrals of them in series in Bessel functions, Eq. (1.1) takes the form

(2.4)

In low viscosity, weakly stratified fluids, the governing dimensionless complexes, given by the relations

(St is the Stokes number), are found to be small quantities and will be used as expansion parameters in the subsequent analysis. Taking
account of the existence of small factors of a different nature, the method of multiple scales is used as the basic instrument of the analysis.

When account is taken of the notation introduced for the small parameters, Eqs (2.3) and (2.4) are transformed into the system of
integro-differential equations

(2.5)

which relate the dimensionless spectral velocity function
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to the relative displacement 	 = �/�0, where

The function f is the solution of Eq. (2.3).
System (2.5) is considered with the initial conditions

and the condition for the attensation of all motions at long times

The basic properties of solution (2.2) are determined by the method of multiple scales,13 taking account of the smallness of the ratios

, � and �.

The set of time parameters

is introduced in the implementation of this method.
Time derivatives are then represented in the form of the expansions

where

The functions W and 	 are represented in a similar manner:

(2.6)

The functions G = G(�, 	, T1) and Q = Q(�, 	, T1) depend solely dependent on the parameter T1 since the factor

appears in the representation of the kernels G and Q.
Substituting expansions (2.6) into system (2.5), we obtain new systems of equations for determining of the functions Wi and 	i, for the

clear writing of which we introduce the following notation:

The zeroth-order system has the form

(2.7)

The corresponding systems of the first order with respect to the parameters 
, � and � are

(2.8)

Taking account of the initial conditions, we will seek the solution of system (2.7) in the form

(2.9)
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Substituting expression (2.9) into the second equation of system (2.7), we obtain an equation, the solution of which is found using
standard methods and has the form

(2.10)

The change of variables

is introduced to simplify the expression for 	a. In this case, dS = r�dr�d�,  = sin �. Using the representation12

we obtain

(2.11)

The Bessel functions J2k(T0) describe the oscillations of the sphere, and the functions �k play the role of an envelope, and they characterize
the attenuation of each harmonic J2k(T0) due to viscous friction and losses by the radiation of internal waves. The attenuation rate can be
determined by numerical integration and depends slightly on the value of k.

For the purposes of the subsequent analysis, the expression for the displacements of the sphere is represented in the form of an expansion
in a series in Bessel functions

(2.12)

where �N is a universal microscale, characterizing the thickness of the Stokes-type periodic boundary flow.7 The values of the parameter
a can be found from measurements of the damping of the free oscillations of the sphere. Preliminary processing of the experimental
data showed that the basic characteristics of the pattern of oscillations are already described by the first term of series (2.12) which, for
convenience, we present in the physical variables

(2.13)

The first factor characterizes the viscosity effect, and the second factor the buoyancy, effects which are responsible for the difference in
the structure of expression (2.12) from the results of calculations1,2 based on an inviscid fluid model.

3. Experimental apparatus

Experiments were carried out in a laboratory setting including a working tank with illuminators, a mechanism for producing stratifica-
tion, an optical visualization system (an IAB-458 schlieren instrument for observing the flow pattern in a vertical plane), a cathetometer for
determining the initial height and the final position of the body being investigated and an auxiliary mechanism for setting the free neutral
buoyancy body with a zero velocity. The tank was filled with the stratified liquid by the method of successive displacement from below
using a traditional hydraulic system. The buoyancy period was determined using the schlieren instrument or an electrical conductivity
probe from measurements of the natural oscillations of the liquid excited by the sinking trace behind a gas bubble which is floating up
or the trace which is floating up behind a sinking crystal of salt or sugar. This direct method, which is based on the determination of the
buoyancy period, enables one to measure its value with a relative error no greater than 2%.14 A detailed description of the experimental
apparatus has been presented earlier (for example, see Ref. 7).

4. Comparison of the results of calculations and measurements of the trajectory of motion of a neutral buoyancy sphere

Both the results of individual experiments as well as results averaged over several experiments were used in the data processing and
for determining the coefficients in formula (2.13). All the experimental conditions were kept constant in successive experiments in order
to control the reproducibility, or just one of the governing parameters was varied such as, for example, the height of free fall of the sphere
to the neutral buoyancy level. Under such conditions, the results of single-type experiments could be used to increase the accuracy of the
statistical data processing, since the function 	a = �/�0, that is, the ratio of the displacement of the sphere from the neutral buoyancy level
to the height of free fall, is also determined in the calculations. Spline-interpolation of the data was carried out for curves averaged over a
series of experiments of the same type.

A comparison of the data obtained after spline-interpolation with formula (2.13) was performed using the method of least squares. The
values of the coefficient a in formula (2.13) and the oscillation frequencies of the sphere �s were selected from the condition for minimizing
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Fig. 1.

the �2 criterion.15 The ratio 
N = (�x − N)/N, which characterizes the extent of the effect of induced flows and waves in the fluid on the
parameters of fluid motion, was used to estimate the difference in the frequencies �s and the buoyancy N.

The results of a calculation using formula (2.13) (the solid, dashed and dot-dashed curves for a = 0.12 and the experimental data (the
points) for the normalized displacements of spheres of radius R in fluids with different density gradients are shown in Fig. 1 as a function
of the dimensionless time � = t/Tb (Tb is the buoyancy period). In all cases, the sphere executes damped oscillations with a frequency close
to the buoyancy frequency. The envelope of the displacements rapidly decreases during the first two to three periods of the oscillations
and then varies only slightly.

The calculated and measured data are in especially good agreement everywhere in the case of spheres of minimum size (R = 1.55 cm,
buoyancy period Tb = 13.35 s) apart from the first immersion of the sphere (Fig. 1). The deeper first immersion resulted from the effect of
the wake with bottom and secondary vortices, which entrain fluid from the higher-lying levels, expressed at the start of the process.16 The
effects of fluid transport are not taken into account in this technique.

Quantitative comparison of the calculated and measured trajectories shows that the agreement in the first phase of rapid attenuation of
the oscillations is improved if the sphere radius in the calculations is somewhat increased (by 10 - 15%). This effect is due to the influence
of the boundary layer and the secondary vortices which are also neglected. In the stabilization phase of the oscillations (� > 3), all the data
from the calculations shown in Fig. 1 are in satisfactory agreement with the observations.

As the buoyancy frequency decreases, the difference in the character of the oscillations of spheres of dissimilar radius (Fig. 1) shows
up more clearly. The period of the oscillations increases as the radius of the sphere becomes larger, which leads to a relative displacement
of the curves. As the sphere radius and the buoyancy frequency increases, the contribution from non-wave effects (secondary vortices or
boundary layers) becomes greater which shows up in the discrepancy between the experimental data and the calculations.

The value of the fitting parameter a in formula (2.13) and the relative error in the frequencies 
N are shown in the lower two rows
of Table 1. In all cases, the value of the coefficient a varies over a narrow range (from 0.10 to 0.15) and decreases as the sphere radius
increases.
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Table 1

Tb, S R = 1.55 cm 2.25 3.35

a 
N , % a 
N , % a 
N , %

5.7 ± 0.1 0.13 14 – – – –
9.9 ± 0.1 0.15 4 0.13 10 0.10 0.3
13.3 ± 0.1 0.14 3.3 0.13 2.3 0.12 5.5

At long times, the oscillation frequencies of the sphere are greater than the buoyancy period by several percent. The error in the
frequencies varies irregularly, depending on the experimental conditions.

The values of the calculated period of the oscillations of a sphere in a viscous fluid are considerably less than in an ideal medium
where it is Ti =

√
6/n (Ref. 16, p. 135). The value of the ratio Ti/Tb ≈ 1.225 considerably exceeds the errors in both the calculations and the

measurements, which is indicates of the limitation on the possibility of using an ideal fluid model in problems of the free oscillations of
bodies.

As the buoyancy period decreases, the influence of non-wave effects becomes greater and the value of 
N, which characterizes the
difference between the oscillation frequencies and the buoyancy frequencies correspondingly increases (see the first column of Table 1).

A comparison of the experimental data on the oscillations of a sphere of radius R = 1.55 cm in fluids for different buoyancy periods, shown
by the points in Fig. 2, with the data calculated using formula (2.13) (the solid, dashed and dot-dash curves) shows that stratification only
slightly affects the body motion at the stage of free-fall of the body and the depth of the first immersion. However, it does affect the relative

Fig. 2.
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Fig. 3.

period of the oscillations which decreases as the buoyancy frequency increases (Fig. 2). This effect decreases as the sphere radius increases
(the lower part of Fig. 2).

The comparative accuracy of the calculations of the oscillations of a sphere of radius R = 3.35 cm for Tb = 13.35 s using formula (2.13) with
a = 0.12 (the solid curve) and the previously proposed technique1 (the dashed curve) is illustrated in Fig. 3; the experimental results are
shown by the points. The technique, based on the theory of internal waves in an ideal fluid,1,2 gives oscillation periods in agreement with
experiment, but the amplitude values are considerably overestimated and the rate of attenuation of the oscillations is underestimated.
Formula (2.13) gives values of the depth of the first immersion and heights of the first ascent of the sphere which are too low by 10 -
15%. The trajectory of the motion of the centre of mass of a sphere is subsequently described by expression (2.13) within the limits of
experimental error.

The method of calculation and the formulae obtained can be recommended for estimating periods of oscillation of neutral buoyancy
spheres drifting in a stratified atmosphere or ocean.
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